cs.AI updates on arXiv.org 07月31日 12:47
Shape Invariant 3D-Variational Autoencoder: Super Resolution in Turbulence flow
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了深度学习在湍流建模中的应用,包括传统和基于深度学习的建模方法,并探讨了多尺度模型与深度学习架构的融合以及深度生成模型在超分辨率重建中的应用。

arXiv:2507.22082v1 Announce Type: cross Abstract: Deep learning provides a versatile suite of methods for extracting structured information from complex datasets, enabling deeper understanding of underlying fluid dynamic phenomena. The field of turbulence modeling, in particular, benefits from the growing availability of high-dimensional data obtained through experiments, field observations, and large-scale simulations spanning multiple spatio-temporal scales. This report presents a concise overview of both classical and deep learningbased approaches to turbulence modeling. It further investigates two specific challenges at the intersection of fluid dynamics and machine learning: the integration of multiscale turbulence models with deep learning architectures, and the application of deep generative models for super-resolution reconstruction

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 湍流建模 多尺度模型 深度生成模型 超分辨率重建
相关文章