新智元 前天 23:26
无需准确传感信号!轻松搞定「多段软体机械臂」复杂位姿与形状控制
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

意大利比萨圣安娜高等学院与洛桑联邦理工学院的研究人员提出了一种创新的多段软体机械臂(MSCA)规划与控制策略。该策略基于双向循环神经网络(biLSTM),能够有效应对软体机械臂固有的非线性、时滞性和耦合性等控制难题。即便在内部传感信号不准确的情况下,该方法也能实现末端位姿控制、形状控制、自动避障和实时交互等复杂任务。实验结果表明,相较于传统方法,该biLSTM策略在多种任务中表现出更低的误差,为软体机械臂在手术、维修等精密作业领域的应用开辟了新途径。

💡 biLSTM策略应对软体机械臂控制难题:软体机械臂因其运动的非线性、时滞性与耦合性,控制难度大。该研究提出的biLSTM(双向循环神经网络)策略,能够有效处理多段软体机械臂(MSCA)的复杂运动,即使在内部传感信号不准确时,也能实现精确控制。

🚀 状态到构型再到驱动的控制流程:研究人员设计了一个从状态空间到构型空间的规划(S2C)模型,利用biLSTM作为正向运动学模型,并通过优化损失函数来减小位置和姿态误差、增大障碍物距离以及减少构型变化。随后,利用biLSTM的段间耦合特性实现从构型到驱动的控制(C2A),并引入激活层满足驱动量约束。

✅ 多功能控制能力验证:实验结果表明,该biLSTM策略在末端位姿控制(位置和姿态)、位置限制控制(例如在特定位置不变的情况下驱动机械臂)以及避障与在线追踪方面均表现优异,显著优于传统的常曲率模型(PCC)方法,在多种任务中误差更低。

🌟 未来展望:研究人员计划未来基于物理模型分析工作空间以验证目标位姿的可行性,并引入更多样化的传感器以提高构型估算的准确性,进一步拓展软体机械臂的应用潜力。


  新智元报道  

编辑:LRST
【新智元导读】研究人员提出了一种利用双向循环神经网络(biLSTM)的MSCA规划与控制策略,即使使用不准确的内部传感信号,也能实现上述任务,实验结果表明该方法在多种任务中表现优异。
软体机械臂由于其运动的非线性、时滞性与迟滞性而难以控制,而在多段软体机械臂(MSCA)内,其各段间的驱动、传感和运动的耦合更增加了控制难度。

但同时,由于MSCA的各段可以相对独立地驱动,这类机械臂可以实现末端位姿控制、形状控制、控制过程中自动避障、实时交互等复杂控制任务。

意大利比萨圣安娜高等学院和洛桑联邦理工学院的研究人员提出了一种利用双向循环神经网络(biLSTM)对于MSCA构型的规划与控制的策略,该方法即使运用不准确的内部传感信号也能实现上述复杂任务。

论文链接:https://ieeexplore.ieee.org/document/11049035

研究人员针对MSCA提出了多功能控制器,首先分析多段软体机器人的运动逻辑,如图1所示,各段的驱动量(A)直接影响各段的构型(C),同时其构型还收到相邻段的构型和重力的影响,最终所有段的构型共同决定MSCA的状态(S),如各段的位置、姿态和整体形状。

图1. MSCA运动示意图与实体实验

对于状态空间到构型空间的规划(S2C),研究人员提出了一个以biLSTM作为正向运动学模型(NN_C2S)的优化问题

其中损失函数的各个项分别为了减小目标与实际位置差距(Lp)、减小目标与实际姿态差距(Lo)、增大障碍物与实际位置距离(Lob)、减少每步构型变化(Ld)。

需要注意的是,biLSTM运动学模型不是以准确的各段形变代表配型(real configuration),而是如图1所示,以并不准确的、受段间耦合影响的内部传感估算的形变代表配型(internal configuration).

在根据状态空间的目标规划了目标配型后,接下来实现从配型到驱动的控制(C2A)。由于biLSTM与MSCA有着同样的段间耦合特点(如图2所示),基于研究人员过去的工作,利用biLSTM实现MSCA的配型控制。

图2 (A)MSCA 运动框图、(B)MSCA示意图、(C)biLSTM控制器与(D)单个单元示意图

所使用的线驱机器人的不可压缩性给每段的驱动量(线长)进行了约束,因此我们提出了一个激活层来满足每段的三个驱动量的约束与范围要求。


实验结果研究人员首先进行基础任务的实验并与基于常曲率模型(PCC)的方法进行比较。

在基础任务中,研究人员控制机器人末端位置进行轨迹追踪,并在此基础上控制俯仰角与偏航角。

该方法比PCC在各个任务里都有更低的误差,MSCA运动如图3和视频所示。

图3 MSCA实现末端位置和姿态控制。

除了基础任务,该方法还可以实现一些复杂任务。考虑到MSCA适合在手术、发动机维修等有位置要求的任务中使用,限制某些位置不变的情况下驱动机械臂,运动如图4与视频所示。

图4 MSCA实现位置限制控制

除此之外,该方法还可以实现避障与追踪。

在图5中,MSCA被要求接触红色目标,不断在原轨迹上放置蓝色障碍物使其对于轨迹进行重新规划。

图5 MSCA实现避障

在此基础上,该方法还可以实现线上追踪和避障,如图6和视频所示。

图6 MSCA实现线上追踪与避障


总结在这篇论文中,研究人员基于MSCA的段间耦合提出了利用biLSTM的多功能规划与控制策略,该策略可以实现MSCA的末端位姿控制、位置限制控制、线上避障与追踪。

在以后的工作中,研究人员计划基于物理模型对工作空间进行分析,以在控制前验证目标位姿的可行性,同时计划引入不同的传感器以提高配型准确度。

参考资料:
https://ieeexplore.ieee.org/document/11049035



文章原文

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软体机械臂 biLSTM 控制策略 人工智能 机器人技术
相关文章