arXiv:2507.21186v1 Announce Type: cross Abstract: Transformers have profoundly influenced AI research, but explaining their decisions remains challenging -- even for relatively simpler tasks such as classification -- which hinders trust and safe deployment in real-world applications. Although activation-based attribution methods effectively explain transformer-based text classification models, our findings reveal that these methods can be undermined by class-irrelevant features within activations, leading to less reliable interpretations. To address this limitation, we propose Contrast-CAT, a novel activation contrast-based attribution method that refines token-level attributions by filtering out class-irrelevant features. By contrasting the activations of an input sequence with reference activations, Contrast-CAT generates clearer and more faithful attribution maps. Experimental results across various datasets and models confirm that Contrast-CAT consistently outperforms state-of-the-art methods. Notably, under the MoRF setting, it achieves average improvements of x1.30 in AOPC and x2.25 in LOdds over the most competing methods, demonstrating its effectiveness in enhancing interpretability for transformer-based text classification.