cs.AI updates on arXiv.org 07月30日 12:46
Low-Confidence Gold: Refining Low-Confidence Samples for Efficient Instruction Tuning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为LCG的过滤框架,通过基于质心的聚类和置信度引导选择,识别有价值的指令对,有效提升大型语言模型指令微调效果。

arXiv:2502.18978v4 Announce Type: replace-cross Abstract: The effectiveness of instruction fine-tuning for Large Language Models is fundamentally constrained by the quality and efficiency of training datasets. This work introduces Low-Confidence Gold (LCG), a novel filtering framework that employs centroid-based clustering and confidence-guided selection for identifying valuable instruction pairs. Through a semi-supervised approach using a lightweight classifier trained on representative samples, LCG curates high-quality subsets while preserving data diversity. Experimental evaluation demonstrates that models fine-tuned on LCG-filtered subsets of 6K samples achieve superior performance compared to existing methods, with substantial improvements on MT-bench and consistent gains across comprehensive evaluation metrics. The framework's efficacy while maintaining model performance establishes a promising direction for efficient instruction tuning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LCG框架 LLM指令微调 数据过滤
相关文章