cs.AI updates on arXiv.org 07月30日 12:46
Handling Out-of-Distribution Data: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨机器学习中的分布偏移问题,分析传统方法处理不足,并提出应对策略与未来研究方向。

arXiv:2507.21160v1 Announce Type: cross Abstract: In the field of Machine Learning (ML) and data-driven applications, one of the significant challenge is the change in data distribution between the training and deployment stages, commonly known as distribution shift. This paper outlines different mechanisms for handling two main types of distribution shifts: (i) Covariate shift: where the value of features or covariates change between train and test data, and (ii) Concept/Semantic-shift: where model experiences shift in the concept learned during training due to emergence of novel classes in the test phase. We sum up our contributions in three folds. First, we formalize distribution shifts, recite on how the conventional method fails to handle them adequately and urge for a model that can simultaneously perform better in all types of distribution shifts. Second, we discuss why handling distribution shifts is important and provide an extensive review of the methods and techniques that have been developed to detect, measure, and mitigate the effects of these shifts. Third, we discuss the current state of distribution shift handling mechanisms and propose future research directions in this area. Overall, we provide a retrospective synopsis of the literature in the distribution shift, focusing on OOD data that had been overlooked in the existing surveys.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 分布偏移 数据处理 模型优化
相关文章