cs.AI updates on arXiv.org 07月30日 12:12
A Study on Variants of Conventional, Fuzzy, and Nullspace-Based Independence Criteria for Improving Supervised and Unsupervised Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出三种独立性标准,设计无监督和监督降维方法,评估了方法在线性及神经网络非线性设置下的对比、准确性和可解释性,结果显示新方法优于现有基准,为研究人员开辟了新的可解释机器学习途径。

arXiv:2507.21136v1 Announce Type: cross Abstract: Unsupervised and supervised learning methods conventionally use kernels to capture nonlinearities inherent in data structure. However experts have to ensure their proposed nonlinearity maximizes variability and capture inherent diversity of data. We reviewed all independence criteria to design unsupervised learners. Then we proposed 3 independence criteria and used them to design unsupervised and supervised dimensionality reduction methods. We evaluated contrast, accuracy and interpretability of these methods in both linear and neural nonlinear settings. The results show that the methods have outperformed the baseline (tSNE, PCA, regularized LDA, VAE with (un)supervised learner and layer sharing) and opened a new line of interpretable machine learning (ML) for the researchers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无监督学习 监督学习 降维方法 非线性数据 机器学习
相关文章