cs.AI updates on arXiv.org 07月30日 12:12
A Tactical Behaviour Recognition Framework Based on Causal Multimodal Reasoning: A Study on Covert Audio-Video Analysis Combining GAN Structure Enhancement and Phonetic Accent Modelling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为TACTIC-GRAPHS的系统,该系统结合了谱图理论和多模态图神经网络推理,用于在战术视频中进行语义理解和威胁检测。系统采用语义感知的关键帧提取方法,融合视觉、声学和行为线索构建时间图,并通过图注意力和Laplacian谱映射进行跨模态加权和因果信号分析,实验结果表明其在时间对齐和威胁链识别方面表现优异。

arXiv:2507.21100v1 Announce Type: cross Abstract: This paper introduces TACTIC-GRAPHS, a system that combines spectral graph theory and multimodal graph neural reasoning for semantic understanding and threat detection in tactical video under high noise and weak structure. The framework incorporates spectral embedding, temporal causal edge modeling, and discriminative path inference across heterogeneous modalities. A semantic-aware keyframe extraction method fuses visual, acoustic, and action cues to construct temporal graphs. Using graph attention and Laplacian spectral mapping, the model performs cross-modal weighting and causal signal analysis. Experiments on TACTIC-AVS and TACTIC-Voice datasets show 89.3 percent accuracy in temporal alignment and over 85 percent recognition of complete threat chains, with node latency within plus-minus 150 milliseconds. The approach enhances structural interpretability and supports applications in surveillance, defense, and intelligent security systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

TACTIC-GRAPHS 图神经网络 语义理解 威胁检测 战术视频
相关文章