cs.AI updates on arXiv.org 07月30日 12:12
Categorical Classification of Book Summaries Using Word Embedding Techniques
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文利用词嵌入方法、自然语言处理技术和机器学习算法对图书网站的书本摘要和分类进行了分类。对比了常用的词嵌入方法如One-Hot Encoding、Word2Vec和TF-IDF,结果显示支持向量机、朴素贝叶斯和逻辑回归模型与TF-IDF和One-Hot Encoder在土耳其文本分类中取得了更成功的成果。

arXiv:2507.21058v1 Announce Type: cross Abstract: In this study, book summaries and categories taken from book sites were classified using word embedding methods, natural language processing techniques and machine learning algorithms. In addition, one hot encoding, Word2Vec and Term Frequency - Inverse Document Frequency (TF-IDF) methods, which are frequently used word embedding methods were used in this study and their success was compared. Additionally, the combination table of the pre-processing methods used is shown and added to the table. Looking at the results, it was observed that Support Vector Machine, Naive Bayes and Logistic Regression Models and TF-IDF and One-Hot Encoder word embedding techniques gave more successful results for Turkish texts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

词嵌入 图书分类 机器学习 自然语言处理 土耳其文本
相关文章