cs.AI updates on arXiv.org 07月30日 12:12
PHAX: A Structured Argumentation Framework for User-Centered Explainable AI in Public Health and Biomedical Sciences
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了PHAX,一个利用结构化论证生成面向公众的解释框架,以增强AI在公共卫生领域的可解释性和信任度。

arXiv:2507.22009v1 Announce Type: new Abstract: Ensuring transparency and trust in AI-driven public health and biomedical sciences systems requires more than accurate predictions-it demands explanations that are clear, contextual, and socially accountable. While explainable AI (XAI) has advanced in areas like feature attribution and model interpretability, most methods still lack the structure and adaptability needed for diverse health stakeholders, including clinicians, policymakers, and the general public. We introduce PHAX-a Public Health Argumentation and eXplainability framework-that leverages structured argumentation to generate human-centered explanations for AI outputs. PHAX is a multi-layer architecture combining defeasible reasoning, adaptive natural language techniques, and user modeling to produce context-aware, audience-specific justifications. More specifically, we show how argumentation enhances explainability by supporting AI-driven decision-making, justifying recommendations, and enabling interactive dialogues across user types. We demonstrate the applicability of PHAX through use cases such as medical term simplification, patient-clinician communication, and policy justification. In particular, we show how simplification decisions can be modeled as argument chains and personalized based on user expertise-enhancing both interpretability and trust. By aligning formal reasoning methods with communicative demands, PHAX contributes to a broader vision of transparent, human-centered AI in public health.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI可解释性 公共卫生 结构化论证 用户建模
相关文章