cs.AI updates on arXiv.org 07月30日 12:12
Conceptualizing Uncertainty: A Concept-based Approach to Explaining Uncertainty
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于概念激活向量的不确定性解释方法,用于高维数据分类,旨在提高模型的可解释性和预测可信度。

arXiv:2503.03443v2 Announce Type: replace-cross Abstract: Uncertainty in machine learning refers to the degree of confidence or lack thereof in a model's predictions. While uncertainty quantification methods exist, explanations of uncertainty, especially in high-dimensional settings, remain an open challenge. Existing work focuses on feature attribution approaches which are restricted to local explanations. Understanding uncertainty, its origins, and characteristics on a global scale is crucial for enhancing interpretability and trust in a model's predictions. In this work, we propose to explain the uncertainty in high-dimensional data classification settings by means of concept activation vectors which give rise to local and global explanations of uncertainty. We demonstrate the utility of the generated explanations by leveraging them to refine and improve our model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不确定性解释 高维数据 概念激活向量 模型可解释性 机器学习
相关文章