cs.AI updates on arXiv.org 07月30日 12:12
Supervised Quantum Image Processing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章比较了四种量子图像表示方法的压缩性能,并分析了量子核在二分类问题中的准确性与资源需求。

arXiv:2507.22039v1 Announce Type: cross Abstract: In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子图像处理 数据压缩 量子计算 图像表示 二分类
相关文章