cs.AI updates on arXiv.org 07月30日 12:11
Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于神经网络的动态系统控制器Hion,利用庞特里亚金极大值原理进行最优控制策略估计,并通过T-mano架构实现定制瞬态行为、预测控制和闭环反馈,与现有方法相比,Hion控制器在最优性和跟踪能力方面表现出优势。

arXiv:2411.01297v3 Announce Type: replace-cross Abstract: This paper formalizes Hamiltonian-Informed Optimal Neural (Hion) controllers, a novel class of neural network-based controllers for dynamical systems and explicit non-linear model-predictive control. Hion controllers estimate future states and develop an optimal control strategy using Pontryagin's Maximum Principle. The proposed framework, along with our Taylored Multi-Faceted Approach for Neural ODE and Optimal Control (T-mano) architecture, allows for custom transient behavior, predictive control, and closed-loop feedback, addressing limitations of existing methods. Comparative analyses with established model-predictive controllers revealed Hion controllers' superior optimality and tracking capabilities. Optimal control strategies are also demonstrated for both linear and non-linear dynamical systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络控制器 动态系统 最优控制 T-mano架构
相关文章