cs.AI updates on arXiv.org 07月30日 12:11
Intrinsic Barriers and Practical Pathways for Human-AI Alignment: An Agreement-Based Complexity Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将AI对齐问题转化为多目标优化问题,分析其对齐难题,并提出解决方案,强调在实现人类价值观时需管理复杂性。

arXiv:2502.05934v2 Announce Type: replace Abstract: We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,\delta\rangle$-agreement that generalizes prior approaches with fewer assumptions, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives with probability at least $1-\delta$. Using communication complexity, we prove an information-theoretic lower bound demonstrating that once either $M$ or $N$ is large enough, no interaction or rationality can avoid intrinsic alignment overheads. This barrier establishes rigorous intrinsic limits to alignment \emph{itself}, not merely to specific methods, clarifying a crucial no free lunch'' principle: encodingall human values'' inevitably leads to misalignment, requiring future methods to explicitly manage complexity through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we provide explicit algorithms achieving alignment under both computationally unbounded and bounded rationality with noisy messages. Even in these best-case scenarios where alignment to arbitrary precision is theoretically guaranteed, our analysis identifies three critical scalability barriers: the number of tasks ($M$), agents ($N$), and task state space size ($D$); thereby highlighting fundamental complexity-theoretic constraints and providing guidelines for safer, scalable human-AI collaboration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI对齐 多目标优化 信息理论 算法
相关文章