cs.AI updates on arXiv.org 07月30日 12:11
Shapley Uncertainty in Natural Language Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出基于Shapley不确定性的语义熵测量方法,用于评估大型语言模型在问答任务中的输出可信度,并通过实验证明其有效性。

arXiv:2507.21406v1 Announce Type: new Abstract: In question-answering tasks, determining when to trust the outputs is crucial to the alignment of large language models (LLMs). Kuhn et al. (2023) introduces semantic entropy as a measure of uncertainty, by incorporating linguistic invariances from the same meaning. It primarily relies on setting threshold to measure the level of semantic equivalence relation. We propose a more nuanced framework that extends beyond such thresholding by developing a Shapley-based uncertainty metric that captures the continuous nature of semantic relationships. We establish three fundamental properties that characterize valid uncertainty metrics and prove that our Shapley uncertainty satisfies these criteria. Through extensive experiments, we demonstrate that our Shapley uncertainty more accurately predicts LLM performance in question-answering and other datasets, compared to similar baseline measures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义熵 Shapley不确定性 大型语言模型 问答任务 不确定性测量
相关文章