cs.AI updates on arXiv.org 07月30日 12:11
Learning Kinetic Monte Carlo stochastic dynamics with Deep Generative Adversarial Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文展示如何利用生成对抗网络(GANs)学习随机动力学,并通过与传统模型的对比,捕捉热涨落。通过建立基于动力学蒙特卡洛模拟的数据集,对条件GAN进行训练,实现系统状态的随机传播,并讨论了与标准GAN的改进,使网络更易于收敛且提高准确性。实验结果表明,该网络能定量复现平衡和动力学特性,与精确值偏差仅为几个百分点。

arXiv:2507.21763v1 Announce Type: cross Abstract: We show that Generative Adversarial Networks (GANs) may be fruitfully exploited to learn stochastic dynamics, surrogating traditional models while capturing thermal fluctuations. Specifically, we showcase the application to a two-dimensional, many-particle system, focusing on surface-step fluctuations and on the related time-dependent roughness. After the construction of a dataset based on Kinetic Monte Carlo simulations, a conditional GAN is trained to propagate stochastically the state of the system in time, allowing the generation of new sequences with a reduced computational cost. Modifications with respect to standard GANs, which facilitate convergence and increase accuracy, are discussed. The trained network is demonstrated to quantitatively reproduce equilibrium and kinetic properties, including scaling laws, with deviations of a few percent from the exact value. Extrapolation limits and future perspectives are critically discussed.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成对抗网络 随机动力学 动力学学习
相关文章