cs.AI updates on arXiv.org 07月30日 12:11
Leveraging Generative AI to Enhance Synthea Module Development
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了将大型语言模型(LLMs)应用于Synthea开源健康数据生成工具疾病模块的开发,旨在减少开发时间、降低所需的专业知识、拓展模型多样性,并提高合成患者数据的整体质量。通过四个方面展示了LLMs如何支持Synthea模块的创建,同时提出了逐步优化的概念。虽然LLMs在此领域有前景,但文章也指出了挑战和限制,并提出了未来研究的建议。

arXiv:2507.21123v1 Announce Type: new Abstract: This paper explores the use of large language models (LLMs) to assist in the development of new disease modules for Synthea, an open-source synthetic health data generator. Incorporating LLMs into the module development process has the potential to reduce development time, reduce required expertise, expand model diversity, and improve the overall quality of synthetic patient data. We demonstrate four ways that LLMs can support Synthea module creation: generating a disease profile, generating a disease module from a disease profile, evaluating an existing Synthea module, and refining an existing module. We introduce the concept of progressive refinement, which involves iteratively evaluating the LLM-generated module by checking its syntactic correctness and clinical accuracy, and then using that information to modify the module. While the use of LLMs in this context shows promise, we also acknowledge the challenges and limitations, such as the need for human oversight, the importance of rigorous testing and validation, and the potential for inaccuracies in LLM-generated content. The paper concludes with recommendations for future research and development to fully realize the potential of LLM-aided synthetic data creation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 Synthea 疾病模块 数据生成 健康数据
相关文章