cs.AI updates on arXiv.org 07月29日 12:22
MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MTMamba++,一种基于Mamba解码器的多任务场景理解新架构,通过自任务和跨任务Mamba块增强长距离依赖和任务交互,在多个数据集上展示出优越性能。

arXiv:2408.15101v2 Announce Type: replace-cross Abstract: Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Extensive experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based, Transformer-based, and diffusion-based methods while maintaining high computational efficiency. The code is available at https://github.com/EnVision-Research/MTMamba.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多任务学习 场景理解 MTMamba++
相关文章