cs.AI updates on arXiv.org 07月29日 12:22
Benchmarking and Analyzing Generative Data for Visual Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨大型预训练生成模型在视觉识别中的应用,构建了GenBench基准,提出CLER评分,比较生成数据与检索数据,分析外部知识注入对性能的影响,为未来研究提供方向。

arXiv:2307.13697v2 Announce Type: replace-cross Abstract: Advancements in large pre-trained generative models have expanded their potential as effective data generators in visual recognition. This work delves into the impact of generative images, primarily comparing paradigms that harness external data (\ie generative \vs retrieval \vs original). Our key contributions are: \textbf{1) GenBench Construction:} We devise \textbf{GenBench}, a broad benchmark comprising 22 datasets with 2548 categories, to appraise generative data across various visual recognition tasks. \textbf{2) CLER Score:} To address the insufficient correlation of existing metrics (\eg, FID, CLIP score) with downstream recognition performance, we propose \textbf{CLER}, a training-free metric indicating generative data's efficiency for recognition tasks prior to training. \textbf{3) New Baselines:} Comparisons of generative data with retrieved data from the same external pool help to elucidate the unique traits of generative data. \textbf{4) External Knowledge Injection:} By fine-tuning special token embeddings for each category via Textual Inversion, performance improves across 17 datasets, except when dealing with low-resolution reference images. Our exhaustive benchmark and analysis spotlight generative data's promise in visual recognition, while identifying key challenges for future investigation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉识别 生成数据 基准测试 外部知识注入
相关文章