cs.AI updates on arXiv.org 07月29日 12:22
Enhancing Hallucination Detection via Future Context
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对黑盒生成模型的幻觉检测框架,通过采样未来上下文提供检测线索,有效提升检测效果。

arXiv:2507.20546v1 Announce Type: cross Abstract: Large Language Models (LLMs) are widely used to generate plausible text on online platforms, without revealing the generation process. As users increasingly encounter such black-box outputs, detecting hallucinations has become a critical challenge. To address this challenge, we focus on developing a hallucination detection framework for black-box generators. Motivated by the observation that hallucinations, once introduced, tend to persist, we sample future contexts. The sampled future contexts provide valuable clues for hallucination detection and can be effectively integrated with various sampling-based methods. We extensively demonstrate performance improvements across multiple methods using our proposed sampling approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 幻觉检测 黑盒模型
相关文章