arXiv:2507.20460v1 Announce Type: cross Abstract: Graph sparsification is a key technique for improving inference efficiency in Graph Neural Networks by removing edges with minimal impact on predictions. GNN explainability methods generate local importance scores, which can be aggregated into global scores for graph sparsification. However, many explainability methods produce only non-negative scores, limiting their applicability for sparsification. In contrast, Shapley value based methods assign both positive and negative contributions to node predictions, offering a theoretically robust and fair allocation of importance by evaluating many subsets of graphs. Unlike gradient-based or perturbation-based explainers, Shapley values enable better pruning strategies that preserve influential edges while removing misleading or adversarial connections. Our approach shows that Shapley value-based graph sparsification maintains predictive performance while significantly reducing graph complexity, enhancing both interpretability and efficiency in GNN inference.