cs.AI updates on arXiv.org 07月29日 12:22
ResCap-DBP: A Lightweight Residual-Capsule Network for Accurate DNA-Binding Protein Prediction Using Global ProteinBERT Embeddings
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为ResCap-DBP的深度学习框架,结合残差学习和一维胶囊网络,直接从原始蛋白质序列预测DNA结合蛋白,在多个数据集上表现优于现有方法。

arXiv:2507.20426v1 Announce Type: cross Abstract: DNA-binding proteins (DBPs) are integral to gene regulation and cellular processes, making their accurate identification essential for understanding biological functions and disease mechanisms. Experimental methods for DBP identification are time-consuming and costly, driving the need for efficient computational prediction techniques. In this study, we propose a novel deep learning framework, ResCap-DBP, that combines a residual learning-based encoder with a one-dimensional Capsule Network (1D-CapsNet) to predict DBPs directly from raw protein sequences. Our architecture incorporates dilated convolutions within residual blocks to mitigate vanishing gradient issues and extract rich sequence features, while capsule layers with dynamic routing capture hierarchical and spatial relationships within the learned feature space. We conducted comprehensive ablation studies comparing global and local embeddings from ProteinBERT and conventional one-hot encoding. Results show that ProteinBERT embeddings substantially outperform other representations on large datasets. Although one-hot encoding showed marginal advantages on smaller datasets, such as PDB186, it struggled to scale effectively. Extensive evaluations on four pairs of publicly available benchmark datasets demonstrate that our model consistently outperforms current state-of-the-art methods. It achieved AUC scores of 98.0% and 89.5% on PDB14189andPDB1075, respectively. On independent test sets PDB2272 and PDB186, the model attained top AUCs of 83.2% and 83.3%, while maintaining competitive performance on larger datasets such as PDB20000. Notably, the model maintains a well balanced sensitivity and specificity across datasets. These results demonstrate the efficacy and generalizability of integrating global protein representations with advanced deep learning architectures for reliable and scalable DBP prediction in diverse genomic contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DNA结合蛋白 深度学习 蛋白质序列 预测模型
相关文章