cs.AI updates on arXiv.org 07月29日 12:22
WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出Wasserstein黑洞变换器(WBHT)框架,融合生成模型、序列学习和注意力机制,优化通信网络黑洞异常检测,提升检测效率和准确度,在关键网络监控与安全领域具有重要应用价值。

arXiv:2507.20373v1 Announce Type: cross Abstract: We propose the Wasserstein Black Hole Transformer (WBHT) framework for detecting black hole (BH) anomalies in communication networks. These anomalies cause packet loss without failure notifications, disrupting connectivity and leading to financial losses. WBHT combines generative modeling, sequential learning, and attention mechanisms to improve BH anomaly detection. It integrates a Wasserstein generative adversarial network with attention mechanisms for stable training and accurate anomaly identification. The model uses long-short-term memory layers to capture long-term dependencies and convolutional layers for local temporal patterns. A latent space encoding mechanism helps distinguish abnormal network behavior. Tested on real-world network data, WBHT outperforms existing models, achieving significant improvements in F1 score (ranging from 1.65% to 58.76%). Its efficiency and ability to detect previously undetected anomalies make it a valuable tool for proactive network monitoring and security, especially in mission-critical networks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

通信网络 黑洞异常检测 Wasserstein Black Hole Transformer 生成模型 网络安全
相关文章