cs.AI updates on arXiv.org 07月29日 12:22
Irredundant k-Fold Cross-Validation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出Irredundant k-fold交叉验证,确保每个实例训练和测试各一次,平衡数据集利用,减少过拟合,提高模型分析区分度,降低计算成本。

arXiv:2507.20048v1 Announce Type: cross Abstract: In traditional k-fold cross-validation, each instance is used ($k!-!1$) times for training and once for testing, leading to redundancy that lets many instances disproportionately influence the learning phase. We introduce Irredundant $k$--fold cross-validation, a novel method that guarantees each instance is used exactly once for training and once for testing across the entire validation procedure. This approach ensures a more balanced utilization of the dataset, mitigates overfitting due to instance repetition, and enables sharper distinctions in comparative model analysis. The method preserves stratification and remains model-agnostic, i.e., compatible with any classifier. Experimental results demonstrate that it delivers consistent performance estimates across diverse datasets --comparable to $k$--fold cross-validation-- while providing less optimistic variance estimates because training partitions are non-overlapping, and significantly reducing the overall computational cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

交叉验证 数据利用 模型分析
相关文章