cs.AI updates on arXiv.org 07月29日 12:22
Anomaly Detection in Human Language via Meta-Learning: A Few-Shot Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对跨领域语言异常检测的元学习框架,有效解决少量标记数据下语言异常的检测难题。该方法通过结合案例训练、原型网络和领域重采样,提高模型对新异常检测任务的适应速度,实验结果表明其在F1和AUC评分上优于基线方法。

arXiv:2507.20019v1 Announce Type: cross Abstract: We propose a meta learning framework for detecting anomalies in human language across diverse domains with limited labeled data. Anomalies in language ranging from spam and fake news to hate speech pose a major challenge due to their sparsity and variability. We treat anomaly detection as a few shot binary classification problem and leverage meta-learning to train models that generalize across tasks. Using datasets from domains such as SMS spam, COVID-19 fake news, and hate speech, we evaluate model generalization on unseen tasks with minimal labeled anomalies. Our method combines episodic training with prototypical networks and domain resampling to adapt quickly to new anomaly detection tasks. Empirical results show that our method outperforms strong baselines in F1 and AUC scores. We also release the code and benchmarks to facilitate further research in few-shot text anomaly detection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

元学习 语言异常检测 数据标注 跨领域应用
相关文章