cs.AI updates on arXiv.org 07月29日 12:22
Improving the Performance of Sequential Recommendation Systems with an Extended Large Language Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将Llama2替换为Llama3以改进LLM推荐系统,实验结果表明平均性能提升显著,验证了该方法的实用性。

arXiv:2507.19990v1 Announce Type: cross Abstract: Recently, competition in the field of artificial intelligence (AI) has intensified among major technological companies, resulting in the continuous release of new large-language models (LLMs) that exhibit improved language understanding and context-based reasoning capabilities. It is expected that these advances will enable more efficient personalized recommendations in LLM-based recommendation systems through improved quality of training data and architectural design. However, many studies have not considered these recent developments. In this study, it was proposed to improve LLM-based recommendation systems by replacing Llama2 with Llama3 in the LlamaRec framework. To ensure a fair comparison, random seed values were set and identical input data was provided during preprocessing and training. The experimental results show average performance improvements of 38.65\%, 8.69\%, and 8.19\% for the ML-100K, Beauty, and Games datasets, respectively, thus confirming the practicality of this method. Notably, the significant improvements achieved by model replacement indicate that the recommendation quality can be improved cost-effectively without the need to make structural changes to the system. Based on these results, it is our contention that the proposed approach is a viable solution for improving the performance of current recommendation systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM推荐系统 性能提升 Llama3 Llama2 系统改进
相关文章