cs.AI updates on arXiv.org 07月29日 12:22
Deep Learning Based Joint Channel Estimation and Positioning for Sparse XL-MIMO OFDM Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究近场稀疏XL-MIMO系统中的信道估计与定位问题,提出基于深度学习的两阶段框架CP-Mamba,在信道估计和定位方面显著优于现有方法。

arXiv:2507.19936v1 Announce Type: cross Abstract: This paper investigates joint channel estimation and positioning in near-field sparse extra-large multiple-input multiple-output (XL-MIMO) orthogonal frequency division multiplexing (OFDM) systems. To achieve cooperative gains between channel estimation and positioning, we propose a deep learning-based two-stage framework comprising positioning and channel estimation. In the positioning stage, the user's coordinates are predicted and utilized in the channel estimation stage, thereby enhancing the accuracy of channel estimation. Within this framework, we propose a U-shaped Mamba architecture for channel estimation and positioning, termed as CP-Mamba. This network integrates the strengths of the Mamba model with the structural advantages of U-shaped convolutional networks, enabling effective capture of local spatial features and long-range temporal dependencies of the channel. Numerical simulation results demonstrate that the proposed two-stage approach with CP-Mamba architecture outperforms existing baseline methods. Moreover, sparse arrays (SA) exhibit significantly superior performance in both channel estimation and positioning accuracy compared to conventional compact arrays.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信道估计 定位 XL-MIMO OFDM 深度学习
相关文章