cs.AI updates on arXiv.org 07月29日 12:22
FedS2R: One-Shot Federated Domain Generalization for Synthetic-to-Real Semantic Segmentation in Autonomous Driving
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FedS2R,首个自动驾驶合成到真实语义分割的联邦域泛化框架,通过数据增强和知识蒸馏实现模型优化,实验表明其在真实世界数据集上表现优异。

arXiv:2507.19881v1 Announce Type: cross Abstract: Federated domain generalization has shown promising progress in image classification by enabling collaborative training across multiple clients without sharing raw data. However, its potential in the semantic segmentation of autonomous driving remains underexplored. In this paper, we propose FedS2R, the first one-shot federated domain generalization framework for synthetic-to-real semantic segmentation in autonomous driving. FedS2R comprises two components: an inconsistency-driven data augmentation strategy that generates images for unstable classes, and a multi-client knowledge distillation scheme with feature fusion that distills a global model from multiple client models. Experiments on five real-world datasets, Cityscapes, BDD100K, Mapillary, IDD, and ACDC, show that the global model significantly outperforms individual client models and is only 2 mIoU points behind the model trained with simultaneous access to all client data. These results demonstrate the effectiveness of FedS2R in synthetic-to-real semantic segmentation for autonomous driving under federated learning

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动驾驶 语义分割 联邦学习
相关文章