cs.AI updates on arXiv.org 07月29日 12:21
VAE-GAN Based Price Manipulation in Coordinated Local Energy Markets
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于MADDPG框架的协调分布式能源资源的模型,通过数据驱动强化学习优化能源交易,并研究价格操纵策略对异构用户的影响。

arXiv:2507.19844v1 Announce Type: cross Abstract: This paper introduces a model for coordinating prosumers with heterogeneous distributed energy resources (DERs), participating in the local energy market (LEM) that interacts with the market-clearing entity. The proposed LEM scheme utilizes a data-driven, model-free reinforcement learning approach based on the multi-agent deep deterministic policy gradient (MADDPG) framework, enabling prosumers to make real-time decisions on whether to buy, sell, or refrain from any action while facilitating efficient coordination for optimal energy trading in a dynamic market. In addition, we investigate a price manipulation strategy using a variational auto encoder-generative adversarial network (VAE-GAN) model, which allows utilities to adjust price signals in a way that induces financial losses for the prosumers. Our results show that under adversarial pricing, heterogeneous prosumer groups, particularly those lacking generation capabilities, incur financial losses. The same outcome holds across LEMs of different sizes. As the market size increases, trading stabilizes and fairness improves through emergent cooperation among agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分布式能源 MADDPG 强化学习 能源市场 价格操纵
相关文章