cs.AI updates on arXiv.org 07月29日 12:21
AI-Based Clinical Rule Discovery for NMIBC Recurrence through Tsetlin Machines
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Tsetlin Machine AI模型在膀胱癌诊断中表现优异,准确率高于传统方法,为临床决策提供透明支持。

arXiv:2507.19803v1 Announce Type: cross Abstract: Bladder cancer claims one life every 3 minutes worldwide. Most patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC), yet up to 70% recur after treatment, triggering a relentless cycle of surgeries, monitoring, and risk of progression. Clinical tools like the EORTC risk tables are outdated and unreliable - especially for intermediate-risk cases. We propose an interpretable AI model using the Tsetlin Machine (TM), a symbolic learner that outputs transparent, human-readable logic. Tested on the PHOTO trial dataset (n=330), TM achieved an F1-score of 0.80, outperforming XGBoost (0.78), Logistic Regression (0.60), and EORTC (0.42). TM reveals the exact clauses behind each prediction, grounded in clinical features like tumour count, surgeon experience, and hospital stay - offering accuracy and full transparency. This makes TM a powerful, trustworthy decision-support tool ready for real-world adoption.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Tsetlin Machine 膀胱癌诊断 AI模型 透明度 临床决策
相关文章