cs.AI updates on arXiv.org 07月29日 12:21
Modeling enzyme temperature stability from sequence segment perspective
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Segment Transformer的深度学习框架,用于预测酶的热稳定性,并通过实验验证其有效性。

arXiv:2507.19755v1 Announce Type: cross Abstract: Developing enzymes with desired thermal properties is crucial for a wide range of industrial and research applications, and determining temperature stability is an essential step in this process. Experimental determination of thermal parameters is labor-intensive, time-consuming, and costly. Moreover, existing computational approaches are often hindered by limited data availability and imbalanced distributions. To address these challenges, we introduce a curated temperature stability dataset designed for model development and benchmarking in enzyme thermal modeling. Leveraging this dataset, we present the \textit{Segment Transformer}, a novel deep learning framework that enables efficient and accurate prediction of enzyme temperature stability. The model achieves state-of-the-art performance with an RMSE of 24.03, MAE of 18.09, and Pearson and Spearman correlations of 0.33, respectively. These results highlight the effectiveness of incorporating segment-level representations, grounded in the biological observation that different regions of a protein sequence contribute unequally to thermal behavior. As a proof of concept, we applied the Segment Transformer to guide the engineering of a cutinase enzyme. Experimental validation demonstrated a 1.64-fold improvement in relative activity following heat treatment, achieved through only 17 mutations and without compromising catalytic function.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

酶热稳定性 深度学习 Segment Transformer 酶工程 热稳定性预测
相关文章