cs.AI updates on arXiv.org 07月29日 12:21
PennyCoder: Efficient Domain-Specific LLMs for PennyLane-Based Quantum Code Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PennyCoder,一款轻量级量子编程框架,旨在解决现有量子代码助手依赖远程API的问题,通过本地部署实现量子编程辅助,并显著提高模型功能正确性。

arXiv:2507.19562v1 Announce Type: cross Abstract: The growing demand for robust quantum programming frameworks has unveiled a critical limitation: current large language model (LLM) based quantum code assistants heavily rely on remote APIs, introducing challenges related to privacy, latency, and excessive usage costs. Addressing this gap, we propose PennyCoder, a novel lightweight framework for quantum code generation, explicitly designed for local and embedded deployment to enable on-device quantum programming assistance without external API dependence. PennyCoder leverages a fine-tuned version of the LLaMA 3.1-8B model, adapted through parameter-efficient Low-Rank Adaptation (LoRA) techniques combined with domain-specific instruction tuning optimized for the specialized syntax and computational logic of quantum programming in PennyLane, including tasks in quantum machine learning and quantum reinforcement learning. Unlike prior work focused on cloud-based quantum code generation, our approach emphasizes device-native operability while maintaining high model efficacy. We rigorously evaluated PennyCoder over a comprehensive quantum programming dataset, achieving 44.3% accuracy with our fine-tuned model (compared to 33.7% for the base LLaMA 3.1-8B and 40.1% for the RAG-augmented baseline), demonstrating a significant improvement in functional correctness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子编程 本地部署 PennyCoder 量子机器学习 量子强化学习
相关文章