cs.AI updates on arXiv.org 07月29日 12:21
Quantifying Security Vulnerabilities: A Metric-Driven Security Analysis of Gaps in Current AI Standards
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文审计并量化了NIST、英国和欧盟三大AI治理标准中的安全风险,发现存在重大安全漏洞,强调加强AI合规安全控制的重要性。

arXiv:2502.08610v2 Announce Type: replace-cross Abstract: As AI systems integrate into critical infrastructure, security gaps in AI compliance frameworks demand urgent attention. This paper audits and quantifies security risks in three major AI governance standards: NIST AI RMF 1.0, UK's AI and Data Protection Risk Toolkit, and the EU's ALTAI. Using a novel risk assessment methodology, we develop four key metrics: Risk Severity Index (RSI), Attack Potential Index (AVPI), Compliance-Security Gap Percentage (CSGP), and Root Cause Vulnerability Score (RCVS). Our analysis identifies 136 concerns across the frameworks, exposing significant gaps. NIST fails to address 69.23 percent of identified risks, ALTAI has the highest attack vector vulnerability (AVPI = 0.51) and the ICO Toolkit has the largest compliance-security gap, with 80.00 percent of high-risk concerns remaining unresolved. Root cause analysis highlights under-defined processes (ALTAI RCVS = 033) and weak implementation guidance (NIST and ICO RCVS = 0.25) as critical weaknesses. These findings emphasize the need for stronger, enforceable security controls in AI compliance. We offer targeted recommendations to enhance security posture and bridge the gap between compliance and real-world AI risks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI治理 安全风险 合规控制
相关文章