arXiv:2507.19529v1 Announce Type: cross Abstract: As green hydrogen emerges as a major component of global decarbonisation, Oman has positioned itself strategically through national auctions and international partnerships. Following two successful green hydrogen project rounds, the country launched its third auction (R3) in the Duqm region. While this area exhibits relative geospatial homogeneity, it is still vulnerable to environmental fluctuations that pose inherent risks to productivity. Despite growing global investment in green hydrogen, operational data remains scarce, with major projects like Saudi Arabia's NEOM facility not expected to commence production until 2026, and Oman's ACME Duqm project scheduled for 2028. This absence of historical maintenance and performance data from large-scale hydrogen facilities in desert environments creates a major knowledge gap for accurate risk assessment for infrastructure planning and auction decisions. Given this data void, environmental conditions emerge as accessible and reliable proxy for predicting infrastructure maintenance pressures, because harsh desert conditions such as dust storms, extreme temperatures, and humidity fluctuations are well-documented drivers of equipment degradation in renewable energy systems. To address this challenge, this paper proposes an Artificial Intelligence decision support system that leverages publicly available meteorological data to develop a predictive Maintenance Pressure Index (MPI), which predicts risk levels and future maintenance demands on hydrogen infrastructure. This tool strengthens regulatory foresight and operational decision-making by enabling temporal benchmarking to assess and validate performance claims over time. It can be used to incorporate temporal risk intelligence into auction evaluation criteria despite the absence of historical operational benchmarks.