cs.AI updates on arXiv.org 07月29日 12:21
Deep Unsupervised Domain Adaptation for Time Series Classification: a Benchmark
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一个针对时序数据无监督领域自适应(UDA)技术的综合基准,提供多个数据集,评估深度学习方法,为研究者与实践者提供资源。

arXiv:2312.09857v3 Announce Type: replace-cross Abstract: Unsupervised Domain Adaptation (UDA) aims to harness labeled source data to train models for unlabeled target data. Despite extensive research in domains like computer vision and natural language processing, UDA remains underexplored for time series data, which has widespread real-world applications ranging from medicine and manufacturing to earth observation and human activity recognition. Our paper addresses this gap by introducing a comprehensive benchmark for evaluating UDA techniques for time series classification, with a focus on deep learning methods. We provide seven new benchmark datasets covering various domain shifts and temporal dynamics, facilitating fair and standardized UDA method assessments with state of the art neural network backbones (e.g. Inception) for time series data. This benchmark offers insights into the strengths and limitations of the evaluated approaches while preserving the unsupervised nature of domain adaptation, making it directly applicable to practical problems. Our paper serves as a vital resource for researchers and practitioners, advancing domain adaptation solutions for time series data and fostering innovation in this critical field. The implementation code of this benchmark is available at https://github.com/EricssonResearch/UDA-4-TSC.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时序数据 无监督领域自适应 深度学习 基准评估 数据集
相关文章