cs.AI updates on arXiv.org 07月29日 12:21
Exoplanet Detection Using Machine Learning Models Trained on Synthetic Light Curves
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了机器学习在系外行星发现中的应用,分析了多种模型在验证行星上的效果,并指出数据增强技术对提高预测准确性的重要性。

arXiv:2507.19520v1 Announce Type: cross Abstract: With manual searching processes, the rate at which scientists and astronomers discover exoplanets is slow because of inefficiencies that require an extensive time of laborious inspections. In fact, as of now there have been about only 5,000 confirmed exoplanets since the late 1900s. Recently, machine learning (ML) has proven to be extremely valuable and efficient in various fields, capable of processing massive amounts of data in addition to increasing its accuracy by learning. Though ML models for discovering exoplanets owned by large corporations (e.g. NASA) exist already, they largely depend on complex algorithms and supercomputers. In an effort to reduce such complexities, in this paper, we report the results and potential benefits of various, well-known ML models in the discovery and validation of extrasolar planets. The ML models that are examined in this study include logistic regression, k-nearest neighbors, and random forest. The dataset on which the models train and predict is acquired from NASA's Kepler space telescope. The initial results show promising scores for each model. However, potential biases and dataset imbalances necessitate the use of data augmentation techniques to further ensure fairer predictions and improved generalization. This study concludes that, in the context of searching for exoplanets, data augmentation techniques significantly improve the recall and precision, while the accuracy varies for each model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 系外行星 数据增强 模型分析 NASA
相关文章