cs.AI updates on arXiv.org 07月29日 12:21
Enhancing Spatiotemporal Networks with xLSTM: A Scalar LSTM Approach for Cellular Traffic Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种轻量级时空网络,结合sLSTM和Conv3D模块,有效预测交通流量,减少误差,适用于5G及未来网络。

arXiv:2507.19513v1 Announce Type: cross Abstract: Accurate spatiotemporal traffic forecasting is vital for intelligent resource management in 5G and beyond. However, conventional AI approaches often fail to capture the intricate spatial and temporal patterns that exist, due to e.g., the mobility of users. We introduce a lightweight, dual-path Spatiotemporal Network that leverages a Scalar LSTM (sLSTM) for efficient temporal modeling and a three-layer Conv3D module for spatial feature extraction. A fusion layer integrates both streams into a cohesive representation, enabling robust forecasting. Our design improves gradient stability and convergence speed while reducing prediction error. Evaluations on real-world datasets show superior forecast performance over ConvLSTM baselines and strong generalization to unseen regions, making it well-suited for large-scale, next-generation network deployments. Experimental evaluation shows a 23% MAE reduction over ConvLSTM, with a 30% improvement in model generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时空网络 交通预测 AI模型 5G网络 预测准确性
相关文章