cs.AI updates on arXiv.org 07月29日 12:21
evalSmarT: An LLM-Based Framework for Evaluating Smart Contract Generated Comments
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出evalSmarT框架,利用大型语言模型评估智能合约注释生成质量,解决传统评估方法不足的问题,提供可扩展、可模块化的解决方案。

arXiv:2507.20774v1 Announce Type: new Abstract: Smart contract comment generation has gained traction as a means to improve code comprehension and maintainability in blockchain systems. However, evaluating the quality of generated comments remains a challenge. Traditional metrics such as BLEU and ROUGE fail to capture domain-specific nuances, while human evaluation is costly and unscalable. In this paper, we present \texttt{evalSmarT}, a modular and extensible framework that leverages large language models (LLMs) as evaluators. The system supports over 400 evaluator configurations by combining approximately 40 LLMs with 10 prompting strategies. We demonstrate its application in benchmarking comment generation tools and selecting the most informative outputs. Our results show that prompt design significantly impacts alignment with human judgment, and that LLM-based evaluation offers a scalable and semantically rich alternative to existing methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能合约 注释生成 质量评估 大型语言模型 evalSmarT
相关文章