cs.AI updates on arXiv.org 07月29日 12:21
Adaptive Fuzzy Time Series Forecasting via Partially Asymmetric Convolution and Sub-Sliding Window Fusion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于滑动窗口的卷积神经网络架构,通过自适应模糊化时间数据,实现准确的时间序列预测,并在多个时间序列数据集上取得最先进的结果。

arXiv:2507.20641v1 Announce Type: new Abstract: At present, state-of-the-art forecasting models are short of the ability to capture spatio-temporal dependency and synthesize global information at the stage of learning. To address this issue, in this paper, through the adaptive fuzzified construction of temporal data, we propose a novel convolutional architecture with partially asymmetric design based on the scheme of sliding window to realize accurate time series forecasting. First, the construction strategy of traditional fuzzy time series is improved to further extract short and long term temporal interrelation, which enables every time node to automatically possess corresponding global information and inner relationships among them in a restricted sliding window and the process does not require human involvement. Second, a bilateral Atrous algorithm is devised to reduce calculation demand of the proposed model without sacrificing global characteristics of elements. And it also allows the model to avoid processing redundant information. Third, after the transformation of time series, a partially asymmetric convolutional architecture is designed to more flexibly mine data features by filters in different directions on feature maps, which gives the convolutional neural network (CNN) the ability to construct sub-windows within existing sliding windows to model at a more fine-grained level. And after obtaining the time series information at different levels, the multi-scale features from different sub-windows will be sent to the corresponding network layer for time series information fusion. Compared with other competitive modern models, the proposed method achieves state-of-the-art results on most of popular time series datasets, which is fully verified by the experimental results.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列预测 卷积神经网络 模糊化
相关文章