arXiv:2507.20143v1 Announce Type: new Abstract: Despite substantial progress in applying neural networks (NN) to multi-agent reinforcement learning (MARL) areas, they still largely suffer from a lack of transparency and interoperability. However, its implicit cooperative mechanism is not yet fully understood due to black-box networks. In this work, we study an interpretable value decomposition framework via concept bottleneck models, which promote trustworthiness by conditioning credit assignment on an intermediate level of human-like cooperation concepts. To address this problem, we propose a novel value-based method, named Concepts learning for Multi-agent Q-learning (CMQ), that goes beyond the current performance-vs-interpretability trade-off by learning interpretable cooperation concepts. CMQ represents each cooperation concept as a supervised vector, as opposed to existing models where the information flowing through their end-to-end mechanism is concept-agnostic. Intuitively, using individual action value conditioning on global state embeddings to represent each concept allows for extra cooperation representation capacity. Empirical evaluations on the StarCraft II micromanagement challenge and level-based foraging (LBF) show that CMQ achieves superior performance compared with the state-of-the-art counterparts. The results also demonstrate that CMQ provides more cooperation concept representation capturing meaningful cooperation modes, and supports test-time concept interventions for detecting potential biases of cooperation mode and identifying spurious artifacts that impact cooperation.