cs.AI updates on arXiv.org 07月29日 12:21
Advanced System Integration: Analyzing OpenAPI Chunking for Retrieval-Augmented Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了利用大型语言模型(LLM)和检索增强生成(RAG)技术,通过发现代理优化API描述预处理,以实现信息系统(IS)的动态环境集成。

arXiv:2411.19804v2 Announce Type: replace-cross Abstract: Integrating multiple (sub-)systems is essential to create advanced Information Systems (ISs). Difficulties mainly arise when integrating dynamic environments across the IS lifecycle. A traditional approach is a registry that provides the API documentation of the systems' endpoints. Large Language Models (LLMs) have shown to be capable of automatically creating system integrations (e.g., as service composition) based on this documentation but require concise input due to input token limitations, especially regarding comprehensive API descriptions. Currently, it is unknown how best to preprocess these API descriptions. Within this work, we (i) analyze the usage of Retrieval Augmented Generation (RAG) for endpoint discovery and the chunking, i.e., preprocessing, of OpenAPIs to reduce the input token length while preserving the most relevant information. To further reduce the input token length for the composition prompt and improve endpoint retrieval, we propose (ii) a Discovery Agent that only receives a summary of the most relevant endpoints and retrieves details on demand. We evaluate RAG for endpoint discovery using the RestBench benchmark, first, for the different chunking possibilities and parameters measuring the endpoint retrieval recall, precision, and F1 score. Then, we assess the Discovery Agent using the same test set. With our prototype, we demonstrate how to successfully employ RAG for endpoint discovery to reduce the token count. While revealing high values for recall, precision, and F1, further research is necessary to retrieve all requisite endpoints. Our experiments show that for preprocessing, LLM-based and format-specific approaches outperform na\"ive chunking methods. Relying on an agent further enhances these results as the agent splits the tasks into multiple fine granular subtasks, improving the overall RAG performance in the token count, precision, and F1 score.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信息系统集成 大型语言模型 检索增强生成 API描述预处理 发现代理
相关文章