cs.AI updates on arXiv.org 前天 12:21
Can LLMs Solve ASP Problems? Insights from a Benchmarking Study (Extended Version)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了ASPBench,一个全面的ASP基准,评估了14个LLMs在ASP求解中的性能,发现LLMs在ASP的核心任务上存在局限性。

arXiv:2507.19749v1 Announce Type: new Abstract: Answer Set Programming (ASP) is a powerful paradigm for non-monotonic reasoning. Recently, large language models (LLMs) have demonstrated promising capabilities in logical reasoning. Despite this potential, current evaluations of LLM capabilities in ASP are often limited. Existing works normally employ overly simplified ASP programs, do not support negation, disjunction, or multiple answer sets. Furthermore, there is a lack of benchmarks that introduce tasks specifically designed for ASP solving. To bridge this gap, we introduce ASPBench, a comprehensive ASP benchmark, including three ASP specific tasks: ASP entailment, answer set verification, and answer set computation. Our extensive evaluations on ASPBench reveal that while 14 state-of-the-art LLMs, including \emph{deepseek-r1}, \emph{o4-mini}, and \emph{gemini-2.5-flash-thinking}, perform relatively well on the first two simpler tasks, they struggle with answer set computation, which is the core of ASP solving. These findings offer insights into the current limitations of LLMs in ASP solving. This highlights the need for new approaches that integrate symbolic reasoning capabilities more effectively. The code and dataset are available at https://github.com/HomuraT/ASPBench.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs ASP 性能评估 基准测试 非单调推理
相关文章