cs.AI updates on arXiv.org 07月28日 12:43
Noise Contrastive Estimation-based Matching Framework for Low-Resource Security Attack Pattern Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于语义相似度的神经网络匹配方法,用于在网络安全领域识别TTPs(战术、技术和程序)。该方法通过减少标签空间复杂度,提高模型学习效率。

arXiv:2401.10337v4 Announce Type: replace-cross Abstract: Tactics, Techniques and Procedures (TTPs) represent sophisticated attack patterns in the cybersecurity domain, described encyclopedically in textual knowledge bases. Identifying TTPs in cybersecurity writing, often called TTP mapping, is an important and challenging task. Conventional learning approaches often target the problem in the classical multi-class or multilabel classification setting. This setting hinders the learning ability of the model due to a large number of classes (i.e., TTPs), the inevitable skewness of the label distribution and the complex hierarchical structure of the label space. We formulate the problem in a different learning paradigm, where the assignment of a text to a TTP label is decided by the direct semantic similarity between the two, thus reducing the complexity of competing solely over the large labeling space. To that end, we propose a neural matching architecture with an effective sampling-based learn-to-compare mechanism, facilitating the learning process of the matching model despite constrained resources.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网络安全 TTPs识别 神经网络匹配 语义相似度 学习效率
相关文章