cs.AI updates on arXiv.org 07月28日 12:43
Advancing Event Forecasting through Massive Training of Large Language Models: Challenges, Solutions, and Broader Impacts
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在事件预测领域的进展,分析了LLM在事件预测训练中的难点,提出了缓解这些问题的方法,并建议利用市场、公共和爬虫数据集进行大规模训练和评估。

arXiv:2507.19477v1 Announce Type: cross Abstract: Many recent papers have studied the development of superforecaster-level event forecasting LLMs. While methodological problems with early studies cast doubt on the use of LLMs for event forecasting, recent studies with improved evaluation methods have shown that state-of-the-art LLMs are gradually reaching superforecaster-level performance, and reinforcement learning has also been reported to improve future forecasting. Additionally, the unprecedented success of recent reasoning models and Deep Research-style models suggests that technology capable of greatly improving forecasting performance has been developed. Therefore, based on these positive recent trends, we argue that the time is ripe for research on large-scale training of superforecaster-level event forecasting LLMs. We discuss two key research directions: training methods and data acquisition. For training, we first introduce three difficulties of LLM-based event forecasting training: noisiness-sparsity, knowledge cut-off, and simple reward structure problems. Then, we present related ideas to mitigate these problems: hypothetical event Bayesian networks, utilizing poorly-recalled and counterfactual events, and auxiliary reward signals. For data, we propose aggressive use of market, public, and crawling datasets to enable large-scale training and evaluation. Finally, we explain how these technical advances could enable AI to provide predictive intelligence to society in broader areas. This position paper presents promising specific paths and considerations for getting closer to superforecaster-level AI technology, aiming to call for researchers' interest in these directions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 事件预测 超预测者水平 训练方法 数据获取
相关文章