cs.AI updates on arXiv.org 07月28日 12:43
Data Augmentation for Spoken Grammatical Error Correction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种自动化生成含语法错误和语音不流畅的语音-文本对的方法,并设计了一系列评估指标,旨在扩充原始语料库,为语音语法纠错提供更多类型错误的数据集,同时不改变第二语言学习者的语言评估分数。

arXiv:2507.19374v1 Announce Type: cross Abstract: While there exist strong benchmark datasets for grammatical error correction (GEC), high-quality annotated spoken datasets for Spoken GEC (SGEC) are still under-resourced. In this paper, we propose a fully automated method to generate audio-text pairs with grammatical errors and disfluencies. Moreover, we propose a series of objective metrics that can be used to evaluate the generated data and choose the more suitable dataset for SGEC. The goal is to generate an augmented dataset that maintains the textual and acoustic characteristics of the original data while providing new types of errors. This augmented dataset should augment and enrich the original corpus without altering the language assessment scores of the second language (L2) learners. We evaluate the use of the augmented corpus both for written GEC (the text part) and for SGEC (the audio-text pairs). Our experiments are conducted on the S\&I Corpus, the first publicly available speech dataset with grammar error annotations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音语法纠错 数据集生成 评估指标 语料库扩充 第二语言学习
相关文章