cs.AI updates on arXiv.org 07月28日 12:42
Enhancing Diabetic Retinopathy Classification Accuracy through Dual Attention Mechanism in Deep Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的糖尿病视网膜病变分类方法,通过结合全局和类别注意力机制,有效解决数据不平衡问题,并在两个公开数据集上取得了较好的分类性能。

arXiv:2507.19199v1 Announce Type: cross Abstract: Automatic classification of Diabetic Retinopathy (DR) can assist ophthalmologists in devising personalized treatment plans, making it a critical component of clinical practice. However, imbalanced data distribution in the dataset becomes a bottleneck in the generalization of deep learning models trained for DR classification. In this work, we combine global attention block (GAB) and category attention block (CAB) into the deep learning model, thus effectively overcoming the imbalanced data distribution problem in DR classification. Our proposed approach is based on an attention mechanism-based deep learning model that employs three pre-trained networks, namely, MobileNetV3-small, Efficientnet-b0, and DenseNet-169 as the backbone architecture. We evaluate the proposed method on two publicly available datasets of retinal fundoscopy images for DR. Experimental results show that on the APTOS dataset, the DenseNet-169 yielded 83.20% mean accuracy, followed by the MobileNetV3-small and EfficientNet-b0, which yielded 82% and 80% accuracies, respectively. On the EYEPACS dataset, the EfficientNet-b0 yielded a mean accuracy of 80%, while the DenseNet-169 and MobileNetV3-small yielded 75.43% and 76.68% accuracies, respectively. In addition, we also compute the F1-score of 82.0%, precision of 82.1%, sensitivity of 83.0%, specificity of 95.5%, and a kappa score of 88.2% for the experiments. Moreover, in our work, the MobileNetV3-small has 1.6 million parameters on the APTOS dataset and 0.90 million parameters on the EYEPACS dataset, which is comparatively less than other methods. The proposed approach achieves competitive performance that is at par with recently reported works on DR classification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

糖尿病视网膜病变 深度学习 数据不平衡 分类性能
相关文章