arXiv:2507.19144v1 Announce Type: cross Abstract: Accurate detection and localization of solar photovoltaic (PV) panels in satellite imagery is essential for optimizing microgrids and active distribution networks (ADNs), which are critical components of renewable energy systems. Existing methods lack transparency regarding their underlying algorithms or training datasets, rely on large, high-quality PV training data, and struggle to generalize to new geographic regions or varied environmental conditions without extensive re-training. These limitations lead to inconsistent detection outcomes, hindering large-scale deployment and data-driven grid optimization. In this paper, we investigate how large language models (LLMs) can be leveraged to overcome these challenges. Despite their promise, LLMs face several challenges in solar panel detection, including difficulties with multi-step logical processes, inconsistent output formatting, frequent misclassification of visually similar objects (e.g., shadows, parking lots), and low accuracy in complex tasks such as spatial localization and quantification. To overcome these issues, we propose the PV Assessment with LLMs (PVAL) framework, which incorporates task decomposition for more efficient workflows, output standardization for consistent and scalable formatting, few-shot prompting to enhance classification accuracy, and fine-tuning using curated PV datasets with detailed annotations. PVAL ensures transparency, scalability, and adaptability across heterogeneous datasets while minimizing computational overhead. By combining open-source accessibility with robust methodologies, PVAL establishes an automated and reproducible pipeline for solar panel detection, paving the way for large-scale renewable energy integration and optimized grid management.