cs.AI updates on arXiv.org 07月28日 12:42
MedSymmFlow: Bridging Generative Modeling and Classification in Medical Imaging through Symmetrical Flow Matching
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为MedSymmFlow的医学图像分类模型,该模型基于对称流匹配构建,旨在统一医学图像中的分类、生成和不确定性量化。通过在多个数据集上的测试,该模型在分类准确性和AUC方面表现出色,并能提供可靠的不确定性估计。

arXiv:2507.19098v1 Announce Type: cross Abstract: Reliable medical image classification requires accurate predictions and well-calibrated uncertainty estimates, especially in high-stakes clinical settings. This work presents MedSymmFlow, a generative-discriminative hybrid model built on Symmetrical Flow Matching, designed to unify classification, generation, and uncertainty quantification in medical imaging. MedSymmFlow leverages a latent-space formulation that scales to high-resolution inputs and introduces a semantic mask conditioning mechanism to enhance diagnostic relevance. Unlike standard discriminative models, it naturally estimates uncertainty through its generative sampling process. The model is evaluated on four MedMNIST datasets, covering a range of modalities and pathologies. The results show that MedSymmFlow matches or exceeds the performance of established baselines in classification accuracy and AUC, while also delivering reliable uncertainty estimates validated by performance improvements under selective prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医学图像分类 模型设计 不确定性量化
相关文章