cs.AI updates on arXiv.org 07月28日 12:42
MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于多模态大语言模型的多视角表情理解方法,通过融合视觉和文本信息,显著提升表情识别准确率和细粒度识别能力。

arXiv:2507.18929v1 Announce Type: cross Abstract: Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表情识别 多模态大语言模型 视觉Transformer
相关文章