cs.AI updates on arXiv.org 07月28日 12:42
Flow Stochastic Segmentation Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了Flow Stochastic Segmentation Network(Flow-SSN),一种创新的医学图像分割模型。Flow-SSN克服了传统方法的限制,通过学习高阶像素协方差,在医学图像识别中取得了突破性成果。

arXiv:2507.18838v1 Announce Type: cross Abstract: We introduce the Flow Stochastic Segmentation Network (Flow-SSN), a generative segmentation model family featuring discrete-time autoregressive and modern continuous-time flow variants. We prove fundamental limitations of the low-rank parameterisation of previous methods and show that Flow-SSNs can estimate arbitrarily high-rank pixel-wise covariances without assuming the rank or storing the distributional parameters. Flow-SSNs are also more efficient to sample from than standard diffusion-based segmentation models, thanks to most of the model capacity being allocated to learning the base distribution of the flow, constituting an expressive prior. We apply Flow-SSNs to challenging medical imaging benchmarks and achieve state-of-the-art results. Code available: https://github.com/biomedia-mira/flow-ssn.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Flow-SSN 医学图像分割 自动回归模型 扩散模型
相关文章