cs.AI updates on arXiv.org 07月28日 12:42
Tell Me What You See: An Iterative Deep Learning Framework for Image Captioning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了从简单CNN-LSTM到高效Nexus模型,探讨了视觉与语言处理交叉领域图像描述模型的迭代发展过程,验证了注意力机制的重要性。

arXiv:2507.18788v1 Announce Type: cross Abstract: Image captioning, a task at the confluence of computer vision and natural language processing, requires a sophisticated understanding of both visual scenes and linguistic structure. While modern approaches are dominated by large-scale Transformer architectures, this paper documents a systematic, iterative development of foundational image captioning models, progressing from a simple CNN-LSTM encoder-decoder to a competitive attention-based system. We present a series of five models, beginning with Genesis and concluding with Nexus, an advanced model featuring an EfficientNetV2B3 backbone and a dynamic attention mechanism. Our experiments chart the impact of architectural enhancements and demonstrate a key finding within the classic CNN-LSTM paradigm: merely upgrading the visual backbone without a corresponding attention mechanism can degrade performance, as the single-vector bottleneck cannot transmit the richer visual detail. This insight validates the architectural shift to attention. Trained on the MS COCO 2017 dataset, our final model, Nexus, achieves a BLEU-4 score of 31.4, surpassing several foundational benchmarks and validating our iterative design process. This work provides a clear, replicable blueprint for understanding the core architectural principles that underpin modern vision-language tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像描述 CNN-LSTM 注意力机制 模型迭代 视觉语言处理
相关文章